If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 36x2 + -85x + 118 = 0 Reorder the terms: 118 + -85x + 36x2 = 0 Solving 118 + -85x + 36x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 36 the coefficient of the squared term: Divide each side by '36'. 3.277777778 + -2.361111111x + x2 = 0 Move the constant term to the right: Add '-3.277777778' to each side of the equation. 3.277777778 + -2.361111111x + -3.277777778 + x2 = 0 + -3.277777778 Reorder the terms: 3.277777778 + -3.277777778 + -2.361111111x + x2 = 0 + -3.277777778 Combine like terms: 3.277777778 + -3.277777778 = 0.000000000 0.000000000 + -2.361111111x + x2 = 0 + -3.277777778 -2.361111111x + x2 = 0 + -3.277777778 Combine like terms: 0 + -3.277777778 = -3.277777778 -2.361111111x + x2 = -3.277777778 The x term is -2.361111111x. Take half its coefficient (-1.180555556). Square it (1.393711421) and add it to both sides. Add '1.393711421' to each side of the equation. -2.361111111x + 1.393711421 + x2 = -3.277777778 + 1.393711421 Reorder the terms: 1.393711421 + -2.361111111x + x2 = -3.277777778 + 1.393711421 Combine like terms: -3.277777778 + 1.393711421 = -1.884066357 1.393711421 + -2.361111111x + x2 = -1.884066357 Factor a perfect square on the left side: (x + -1.180555556)(x + -1.180555556) = -1.884066357 Can't calculate square root of the right side. The solution to this equation could not be determined.
| 5x+12=8x+48 | | 2n(n-9)=24 | | 6+4(x-8)=-17-5x | | 4.3x-0.2=8.4 | | 273=68-v | | 8(1-7n)-8=7n | | -10sinx=0 | | -24=3v-6 | | 32-7m=-5(4m+8)-6 | | 75+1.6n=83 | | -6(1-v)=54 | | X+58=2x | | -(1-8v)-2v=-13+2v | | ((3/2)^2)*((2/2)^3) | | 50+7n=I | | -(1+4a)=-1-a | | 3(7k-6)=-5k+34 | | -(6-2p)-3=-p+2(-p-7) | | (x+39)(3x+20)=x | | 5-0.3d=-1 | | y+7-2x=5 | | f(2)=2x | | (4ax/5x^4)(25x/2a) | | 1/16×-8/11-3/4×-8/11=1/2 | | 5(v+4)=-2(7v-4)+9V | | p=34X-132 | | -5x-1-4(3x-3)=4x-8x | | 7.3x=3.3+12 | | 8(-6-p)-6=5p-8(p+8) | | -7-8(m+8)=8m-39 | | 6-4x=1.8 | | 0.5c+0.8=1.3 |